首页> 外文OA文献 >First-principles vs. semi-empirical modeling of global and local electronic transport properties of graphene nanopore-based sensors for DNA sequencing
【2h】

First-principles vs. semi-empirical modeling of global and local electronic transport properties of graphene nanopore-based sensors for DNA sequencing

机译:全球和地方的第一原则与半经验模型   基于石墨烯纳米孔的DNa传感器的电子传输特性   测序

代理获取
本网站仅为用户提供外文OA文献查询和代理获取服务,本网站没有原文。下单后我们将采用程序或人工为您竭诚获取高质量的原文,但由于OA文献来源多样且变更频繁,仍可能出现获取不到、文献不完整或与标题不符等情况,如果获取不到我们将提供退款服务。请知悉。

摘要

Using first-principles quantum transport simulations, based on thenonequilibrium Green function formalism combined with density functional theory(NEGF+DFT), we examine changes in the total and local electronic currentswithin the plane of graphene nanoribbon with zigzag edges (ZGNR) hosting ananopore which are induced by inserting a DNA nucleobase into the pore. We finda sizable change of the zero-bias conductance of two-terminal ZGNR + nanoporedevice after the nucleobase is placed into the most probable position(according to molecular dynamics trajectories) inside the nanopore of a smalldiameter \mbox{$D=1.2$ nm}. Although such effect decreases as the nanopore sizeis increased to \mbox{$D=1.7$ nm}, the contrast between currents in ZGNR +nanopore and ZGNR + nanopore + nucleobase systems can be enhanced by applying asmall bias voltage $V_b \lesssim 0.1$ V. This is explained microscopically asbeing due to DNA nucleobase-induced modification of spatial profile of localcurrent density around the edges of ZGNR. We repeat the same analysis usingNEGF combined with self-consistent charge density functional tight-binding(NEGF+SCC-DFTB) or self-consistent extended H\"{u}ckel (NEGF+SC-EH)semi-empirical methodologies. The large discrepancy we find between the resultsobtained from NEGF+DFT vs. those obtained from NEGF+SCC-DFTB or NEGF+SC-EHapproaches could be of great importance when selecting proper computationalalgorithms for {\em in silico} design of optimal nanoelectronic sensors forrapid DNA sequencing.
机译:使用第一性原理量子输运模拟,基于非平衡格林函数形式主义和密度泛函理论(NEGF + DFT),我们研究了带有锯齿形边缘(ZGNR)的石墨烯纳米带平面内的总电流和局部电子的变化,ZGNR占据了阳极孔。通过将DNA核碱基插入孔中而诱导。在将核碱基置于小直径\ mbox {$ D = 1.2 $ nm}的纳米孔内最可能的位置(根据分子动力学轨迹)后,我们发现了两个末端ZGNR +纳米孔装置的零偏压电导有相当大的变化。 。尽管随着纳米孔尺寸增加到\ mbox {$ D = 1.7 $ nm},这种作用减小,但是通过施加较小的偏置电压$ V_b \ lesssim 0.1 $,可以增强ZGNR +纳米孔和ZGNR +纳米孔+核碱基系统中电流之间的对比度。 V.这在微观上解释是由于DNA核碱基诱导的ZGNR边缘周围局部电流密度空间分布的修饰。我们使用NEGF结合自洽电荷密度泛函紧密结合(NEGF + SCC-DFTB)或自洽扩展H \“ {u} ckel(NEGF + SC-EH)半经验方法,重复进行相同的分析。我们发现从NEGF + DFT获得的结果与从NEGF + SCC-DFTB或NEGF + SC-E获得的结果之间的差异在选择适当的计算算法进行优化纳米电子传感器快速DNA测序的设计时可能非常重要。 。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
代理获取

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号